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PREFACE 

This report  constitutes the first of two volumes which summarize 

the work accomplished under Contract No, NAS8-21282. It includes sup- 

porting experimental data along with an analysis which is designed to 

predict natural frequencies and forced axisymmetric response in a vehicle 

propellant tank. The results a r e  required for further analysis of dynamic 

stability, which has been accomplished in the second phase of the work 

under the above contract, and published in Final Report, P a r t  11, entitled 

"Dynamic Stability of Cylindrical Propellant Tanks. ' I  The latter document 

includes a listing of a digital computer program developed to facilitate use 

of results from the entire research effort. 

Both P a r t  I and Part 11 of this Final Report a r e  published on the 

same date. They present significant extensions and refinements of concepts 

originated under previous investigations conducted for NASA-MSFC. 

of this preliminary work a r e  summarized in "Dynamic Stability and 

Paramet r ic  Resonance in Cylindrical Propellant Tanks, I '  by Daniel D. Kana, 

Wen-Hwa Chu, and Tom D, Dunham, Final Report, Contract No. NAS8- 

Results 

20329, SwRI Project No. 02-1876, January 17, 1968. 
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ABSTRACT 

The influence of a localized rigid mass has been determined for the 

longitudinal response of a model vehicle propellant tank. A theoretical 

analysis is conducted to predict the dynamic response of a simplified model 

consisting of a partially liquid filled cylinder which has a rigid flat bottom, 

an  internal ullage pressure,  and a rigid top mass. Donne11 shell equations, 

along with additional t e rms  t o  allow for geometrical nonlinearities, a r e  

used to  determine natural frequencies and forced axisymmetric response 

of the model. Numerical results are compared with experimental observa- 

tions for a range of several significant parameters,  

coupling occurs between the motion of the shell, liquid, and top mass 

It is found that strong 

over a wide portion of this range. 
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PRINCIPAL NOTATION 

a 

a O  

C O  

cS 

E 

f 

MS 

M** 

m 

radius of the shell 

inner radius' of the tank 

speed of sound in the liquid 

speed of s t r e s s  waves in the shell, ( E / p s ) 1 / 2  

modulus of elasticity 

excitation frequency in cps 

standard acceleration of gravity 

noridimens ional excitation amplitude, $000~ / g  

nondimen s ional liquid depth, h / a 

nondimensional thickness of shell, h, /a  

depth of liquid 

thickness of shell 

mass  moment of inertia of top weight about z axis 

length of the shell 

top mass  

shell mass ,  2nahslps 

nondimens ional top mas s 

one-half of the number of circumferential nodes; cos (me) 

static s t r e s s  resultants 

axial wave number, sin n.rrx/1 

nondimensional pressure loading on cylinder, p r /E  
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PRINC I P A  L NOTA TIQN (C ont ' d) 

F 

PO 

Pr  

P On 
B 

r ,  e ,  x 

t 

XO 

v 

P 

'k 

w 

pressure  in the liquid 

ullage pressure  

pressure  loading on the shell 

generalized loading due to  bottom motion in a rigid tank 

cylindrical coordinates (space fixed) 

time 

u, v, w,  x, y, nondimensionalized by the radius a 

displacements along x ,  8, r direction, respectively 

nondimensional amplitude of axial excitation, Xg  =$,/a 

excitation displacement 

displacement amplitude of axial excitation 

axial wavelength parameter ,  n r a / l  

Poisson's ratio 

mass density of liquid 

mass density of the shell 

nondimensional frequency, w a /  c 

k-th eigenvalue, wka/cs 

c i rcular  frequency of excitation 

Super scripts and Subscripts 

( )P  related to the forced response 

the amplitude of ( ) 

vi 



LIST OF ILLUSTRATIONS 

Figure 

1 Coordinate System for Model 

Page - 
3 

2 Natural Frequencies of Partially Filled Tank with 
Top Mass 20 

a. Wo = 34.53 lb 
b. Wo = 22.32 lb 
C. Wo = 11.48 lb  

20 
21 
22 

3 

4 

Effect of Top Mass on Natural Frequencies 25 

Response of Top Mass Relative to  Input Acceleration 
for Axisymmetric W a l l  Response 26 

vii 



1 

INTRODUCTION 

The interaction of liquids and their elastic containers plays an impor- 

tant role in overall longitudinal response of launch vehicles since liquid pres -  

su res  form complex effective masses ,  as well as avenues of energy feedback 

in a vehicle structure. A s  a result, synthesis of systems into relatively 

simple spring-mass representations 1 provides only a gross approximation of 

vehicle response, although such procedures a r e  very useful from a design 

point of view. 

Various types of responses which occur in a typical single propellant 

2 
tank have been described by Kana and Gormley , while a membrane approach 

to  axisymmetric responses has been given by Kana, et al. 

ar t ic les  contain substantial reference l ists  for additional studies which have 

been reported. 

proach to the liquid-tank interaction problem have concerned only single pro- 

pellant tank systems,  although internal pressurization and elastic support 

effects were included. 

Both of these 

A l l  of these previous studies which include a more exact ap- 

The purpose of the present work is to extend the analysis of a single 

tank to  include a rigid top mass ,  s o  that a better understanding can be ob- 

tained for the coupled effects which occur in a n  overall vehicle structure. 

Both symmetric and nonsymmetric responses a r e  considered, although the 

la t te r  a r e  shown to  be unaffected by the magnitude of the top mass, 

responses a r e  carefully considered, in view of their  importance in spring- 

Symmetric 



2 

mass  model representations1, as well as their formation of the parametric 

loadings for dynamic stability in liquid-tank systems . 4 

It will be seen that the problem under concern is complicated by the 

fact that the eigenvalues appear in the boundary condition a t  the top of the 

tank for the case of symmetric responses. 

some feature, a technique which includes Fourier expansions combined 

with polynomial functions is utilized to produce a matrix-eigenvalue 

formulation. 

In order  to  handle this cumber- 

THEORETICAL ANALYSIS 

General 

A schematic of the system to be investigated is shown in Figure 1 ,  

where some parameters  a r e  also given f o r  the experimental apparatus. 

we consider a partially liquid filled thin cylindrical shell, which is internally 

Thus, 

pressurized,  has a rigid flat bottom, and supports a rigid top mass.  F i r s t ,  

we consider the case  of both symmetric and nonsymmetric f ree  vibration, 

and then axisymmetric response to  longitudinal excitation. 

The governing shell equations for the present problem can be obtained 

from those developed by Sanders5’ 6 ,  after retaining only those te rms  which 

resul t  f rom geometric nonlinearities. Thus, the effects of static s t r e s ses  

will be accounted for. The equations a r e  
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- t - aw t av -+a 2 iy (y 2 2 --)I a I axae a% + I a92 ae axae a 

wharc NXXS, Nxes, Nees  a r e  axisymmetric static s t ress  resultants formed 

by internal pressurization, hydrostatic liquid pressure ,  and the static weight 

of the top mass.  

Natural Frequencies of Partially-Filled Tank with Top Mass  

This section deals with vibrational modes whose radial displacements 

a r e  proportional to cos me. The case of axisymmetric vibration is contained 

a s  a special case  with m = 0. 

cosine ser ies  in x plus a quadratic polynomial'- to satisfy the two end condi- 

tions, and circumferential and radial displacements into Fourier sine ser ies  

Expanding the axial displacement into a Fourier 
.(r 

in x ,  there  results: 

2 2 *Note that this procedure is equivalent to expanding a U/ ax into a Fourier 
cosine ser ies .  
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m 
v = 2 c,, sin ( y )  sin (me) cos (at) 

n =  1 

The boundary conditions a re :  

At X =  0: 

82W u = o ,  w = o ,  v = o  , - = o  
ax2 

A t X = l / a :  

a2w -- au -M**Q&J. W = O ,  V = O  , -- 
ax ax2 - O 

where 

for m = 0 M ( l  - v 2 )  M*Oc4c = 
2= s a 3 ~ ,  

Equations for  determining the unknown coefficients in  Equations (2) 

willnowbe formulated. To satisfy the boundary conditions on axial displace- 

ment, one has, from Equation (3a), 
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Boundary condition (4a) requires 

for  m = 0, 1 or 

for  m 2 2. 

Upon substitution of Equations (2 )  into the axial equation of motion 

(la), the x-independent Fourier  coefficient (n' = 0)  yields 

where 

2 
x 2 0 =  (f)(i) ' x 1 0 =  ($)(!) 
Similarly, for nt  > 1, the cos (nl.rrx/l) coefficient of the axial 

Equation ( l a )  yields 
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The sin (n 'nx / l )  coefficient of the circumferential Equation ( l b )  yields 

I n = l  n =  1 

The s in  (n'.rrx/l ) coefficient of the radial Equation ( I C )  yields 

t m2 "1 tinrn t E I I I ~ X ~ ~ I ~  
. M ~ A :  - 

2.rra2E E E 

where, for  Equations (9)  through (1 1 )* we define 
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and, in Equation ( I C ) ,  for the added mass  pressure of the cosme  mode 

[obtained from Equations (18) i n  the next section] we have used 

Thus, in Equation (1 1 ), the effect of initial tension due to the ul lage 

pressure,  the hydrostatic pressure,  and top weight a r e  included in addition 

to that of the dynamic liquid pressure.  

Equations (6) through (11) can be cast  into the following matrix form: 

L J -  j -  

3 N t 3  X 1 3 N t 3  X 3 N t 3  3 N t 3  X 1 3 N + 3  X 3 N t 3  

where all s e r i e s  have been truncated to N-terms. 

have written, respectively, Equations (11),(9), (lo), (6), (7), and (8)  in this 

order.  Further ,  

To form Equation (12),  we 

while [ ] designates a square N X N submatrix, { }an N X 1 column 

submatrix, ( ) a 1 X N  row submatrix, and all other elements a r e  scalars.  



9 

Note that a [O] indicates a square submatrix whose elements a r e  all zero, 

etc. 

Submatrices of the 3Nf 3 X 1 column matrices are N X 1 column matrices 

given by 

Elements of all these subrnatrices are given in the Appendix. 

Equation (12 )  can be expressed as 

Then, since [R] is a singular matrix, the eigenvalues and eigenvectors 

can be determined from a standard computer subroutine from 

{ uun - I  URD - 5 [I]} {A} = o 
'k 

Thus, for the k, m-th naturalfrequency, the eigenvectors give the displace- 

ment components as 
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Generalized Added Mass of Liquid 

For  radial shell vibrations that are proportional to  COS^^, the liquid 

exerts a radial pressure which may be regarded as an apparent mass  Mmnin 

which is added to the cylinder mass. 

quantity. 

We now derive an expression for this 

The fluid is assumed to be nonviscous, irrotational, but compressible. 

The velocity potential corresponding to the mn-th component of shell motion 

for small disturbances is governed by the wave equation which for periodic 

motion is 

2 2 w v h n f ~ h n = O  
c O  

The boundary condition on the wall i s  

a t  r = a (wmn outward positive) 

where the mn-th component of radial shell motion is 
... 

wTnn = Amn(t)fn(x)cos (me) 

and we assume that fn(x) is an orthogonal set of functions in the interval 

[ O , I ] .  The boundary condition a t  the bottom is: 

When frequency of excitation is much higher than the leading few liquid 

surface sloshing frequencies in consideration, the f ree  surface condition 

can be approximated by 

h n = 0  a t  x = h  (17) 

By separation of variables, a particular solution can be constructed to 

satisfy the boundary conditions on the wetted surface [Eqs. (14)and (16)] as: 
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with Fourier  expansion of fn(x) being 

00 
fn(X) = c Dkn cos (Y) 

k=O 

where 

2 
h 

Dkn = /  fn(x) cos ( y ) d x  
0 1 +don 

and 

where 

2 2 2  2 
6k = [I(P) -yq] 0 

Next consider a complementary solution, satisfying homogeneous boundary 

conditions on the wetted surfaces s o  that the net velocity potential satisfies 

the approximate f ree  - su r  face condition: 
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where 

and 

for 

for pmj <wa 
cO 

where 
1 

*kO = 2 / ,  
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The total velocity potential i s  given by 

h n  = $1 + +Z 

and the linearized pressure loading, given by the Bernoulli equation, is 

As a result, the nl-th component of generalized force pmnin is given by 

integration of the loading with a weighting function frit (x): 

p 

dt"  

where the generalized apparent mass  i s  

in  which 

/" cos ( y) fni(x) dx 

/' fgc(x) dx 
0 

- 0 
Dknt = 
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I f i t (x)  dx 
0 

Note then that the mn-th component of pressure loading on the shell is  

Thus, Mmnin i s  the coefficient of pshs(d2/dt2)(Amn) in the n'-th component 

of shell motion exhibiting a cos (me) mode of vibration. To use this generalized 

coefficient in Equation (1 l ) ,  we note f rom Equation (2c )  that fnt(x) assumes the 

f o r m  

Forced Axisymmetric Response 

Now, assume the tank i s  excited axially. A similar Fourier process 

will be utilized for the solution of this case, so that the same shell displace- 

ment forms [Eqs. (Z ) ]  a r e  again used, except that a superscript  p will be 

incorporated to designate the forced motion. Further,  the response will 

occur at the excitation frequency a, rather than at a natural frequency ok. 

Finally, in this section we disquss only axisymmetric motion (m= 0), which 

is of the most practical  concern in a l inear formulation. 
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The boundary conditions on axial displacement become 

At X = 0 , U = -XOCOS (at)  

To satisfy Equation (19), one has, f rom Equation (2a): 

Additional equations corresponding to Equations (7a), (8), ( 9 ) ,  and 

(10) can now be written as before. 

equations since they a r e  identical to those mentioned except that the 

coefficients c a r r y  the superscript  p and G? replaces Rk. Finally, an 

equation corresponding to (11)  can also be written fo r  the forced response. 

However, we must  f i r s t  discuss the difference in pressure  loading that 

will occur. 

For  brevity we do not write these 

A s  a result  of the axial motion of the tank bottom, the liquid exerts 

a generalized r a d i d  pressure loading p t n  on the tank wall in addition to 

the apparent mass  pressure  pmn. 

pressure can be expressed as  

That is ,  for forced motion the total 

P B 
P; = Pmn + Pon 

The apparent mass pressure  p g n  has already been determined by Equation (18b) 

providing that A,, is utilized in lieu of Amn. 

ptn remains to be determined. This pressure  can be derived f r o m  a one- 

dimensional velocity potential which satisfies the wave equation along 

- 
" P  The additional pressure loading 

with the boundary conditions: 
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+ B = O  at x = h  

= ;io" sinwt at x = 0 ax 
The velocity potential which satisfies these conditions can be found a s  

-wzosinwt sin [= (h - x)] rp = C O  

-cos 0 (e) 
c O  

Thus, the generalized loading (which results from the application of the 

Fourier process) relative to the nl-th tank-displacement component can be 

expressed a s :  

pwzii0 cos (at) sin 
dx 
a 
I 

h 

0 EHs -cos (e) 
0 C O  

where 

1 1  2 = - -  
an' 2 a 

The amplitude of this loading becomes 

where we define 
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We now a r e  in position to formulate the las t  equation required for 

the solution of the forced response. Combining Equations (18b), (21), and 

(22), along with Equations (2) with superscripts p on the coefficients, into 

Equation ( l e ) ,  and collecting the coefficients of the sin (n ' rx l l )  terms, 

there results 

00 

- (1 - v 2 )  n2 1 G~ [bnln t q n l n ]  = (1 - v 2 I - B  POnl (23 1 
n = l  

The equations for  determining the forced response can now be put in the 

following matr ix  form 

= xo 

where 

6 2 =  (1 - v 2 ) Q  2 
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and the elements of the F matr ix  a r e  ( r} 

2 * B  F = (1  - v )Pori, rn '  

The BUD and BRI] matrices  a r e  the same as  inEquation (12). Here, 

ho.wever, the column matrices of response coefficients a r e  different 

f rom those of the natural modes. 

F o r  given values of XO and 52, one can solve fo r  the forced response 

by the following inversion: 



THEORETICAL AND EXPERIMENTAL RESULTS 

Figure 2 shows the variation of natural frequency with liquid depth for 

several  modes of a steel tank whose geometry is given in Figure 1. 

the three  par ts  of Figure 2 is for a different top mass. Theoretical computa- 

tions were performed for the largest  mass (Fig. 2a) only. A l l  symmetric 

modes in the given frequency range were obtained, although only one non- 

symmetric mode is indicated. Of course, many other nonsymmetric natural 

modes existed in this range (note that experimental data for two nonsymmetric 

modes a r e  given in Figures Zb, c). 

Each of 

Natural frequencies for the symmetric modes were determined ex- 

perimentally by detecting peaks in the pressure a t  the center of the tank 

bottom and/or  detecting peaks in the output acceleration of the top mass.  

Although Figure 2 indicates a condition of zero ullage pressure,  up to po = 

10 psig had to  be used in order  t o  obtain data f o r  the symmetric modes. This 

was necessary to prevent the occurrence of instability in some nonsymmetric 

mode, in  which a simple l inear symmetric response no longer was present. 

Fortunately, this procedure was possible since the frequencies of symmetric 

modes were  determined to be independent of ullage pressure.  

however , that frequencies of nonsymmetric modes a r e  highly dependent on 

ullage pres  sure ,  so  that data for the k = 1, m = 10 mode (as well as the k = 1 , 

m = 13 mode) in  Figure 2 were taken at pg = 0. 

We emphasize, 

Data for these modes were 
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taken a s  peaks in the wa l l  response a t  the antinode of the axial wave form. 

Of course, the position of this antinode shifted with different liquid depths. 

Theoretical data for Figure 2a were obtained by the use of a five- 

te rm (n = 1 to 5) expansion in Equation (13) and computing the eigenvalue 

fo r  the resulting 18 X 18 matrix, Some deviation between theory and exper- 

iment can be seen to exist  in Figure 2a. 

in the expansions would reduce this deviation, 

However, the use of more terms 

This can be seen from the 

three points computed for n = 10 te rms  for the first  three symmetric modes 

a t  a depth of h / l  = 0. 55. Since the five-term expansions appeared to give a 

sufficiently good comparions between theoretical and experimental results, 

most of the computations were thereby limited in order to reduce the 

required digital computer time. 

Several interesting observations can be made from the data in  

Figure 2. Although the frequency of the m = 10 mode is considerably below 

those of the symmetric modes throughout most of the depth range, pres -  

surizing the tank can ra i se  the nonsymmetric mode above the lowest sym- 

metr ic  mode. For  low liquid depths, it can be seen that the first symmetric 

mode represents  the first coupled axial top mass-shell  mode with only small  

liquid effects, while the second symmetric mode represents the first coupled 

liquid-shell mode with only small  top-mass effects. However, these roles 
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of the first two modes a r e  interchanged for greater liquid depths as indicated 

by the dashed lines in Figure 2a which represent the respective decoupled 

modes. 

F rom Figure 2 it can be seen that variation in top mass had no effect 

on the nonsymmetric mode but a strong effect on the f i rs t  two symmetric 

modes for a middepth range of liquid. This is shown further in Figure 3. 

Finally, the influence of ullage pressure on frequencies of the nonsymmetric 

l inear mode was not measured since this has been determined by various 

previous investigations. 

Figure 4 shows a comparison of theoretical and experimental axi- 

symmetric forced response for a frequency range which includes the f i rs t  

two modes with a liquid depth of h / l =  0.69. 

p o  = 10 psig, the results a r e  independent of pressure,  a s  has already been 

mentioned. 

as a comparison parameter,  although the liquid pressure at  some point in the 

tank could have been used jus t  a s  well. 

chosen a s  a worst  possible condition for using a given number of ser ies  te rms  

in the theoretical computations. 

Although the data were taken at  

Here,  the acceleration amplification of the top mass was chosen 

An intermediate liquid depth was 

That is ,  previous work indicates that the 

most serious distortions of tank axial mode shape from a half-sine wave 

occurs at intermediate depth ranges. 

Theoretical points w e r e  determined from Equation (25) by 

means of a digital computer, Of course, the net sum of the forced 
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axial displacement components 

solution which is used in Figure 4, 

used, although ten te rms  were used for par t  of the range a s  indicated. 

can be seen that more t e rms  reduce the discrepancy between theory and 

experiment. A l s o ,  the location of the theoretical and experimental resonance 

points corresponds with the location of the respective natural frequencies 

for  the first two symmetric modes in Figure 2a. 

between theory and experiment can be made a s  good as  is desired, and the 

most t e r m s  in the expansions a r e  required at  intermediate depths. 

at x = P form the part  of the theoretical 

Basically, five te rms  were 

It 

Thus, the agreement 

A final comment may be made with regard to the use of polynomial 

functions in conjunction with a Fourier se r ies  (see Eq. 2a). 

that convergence of the solution may be of some concern. However, the 

relatively good comparison between experimental and theoretical results 

tends to  refute the la t te r  concern, a t  least  in the range of parameters 

investigated. 

It is  recognized 
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APPENDIX 

Elements of Submatrices in Equation (12) 

n' designates row and n designates column of the respective elements 


